compact, its preimage in X must be compact. Each point y_i has precisely one preimage point x_i in X, and y possesses precisely one preimage point x, which must belong to W. Since $\{x, x_i\}$ is compact, by passage to a subsequence we may assume that x_i converges to a point $z \in X$. Then $f(x_i) \to f(z)$; therefore since $f(x_i) \to f(x)$, the injectivity of f implies that z = x. Now f is open; so since $f(x_i) \to f(x_i)$, we conclude that, for large $f(x_i) \to f(x_i)$, this result contradicts the assumption $f(x_i) \to f(x_i)$ is indeed a manifold. It is now trivial to check that $f: f(x_i) \to f(x_i)$ is a diffeomorphism, for we now know f to be a local diffeomorphism from $f(x_i) \to f(x_i)$. Since it is bijective, the inverse $f^{-1}: f(x_i) \to f(x_i)$ is well defined as a set map. But locally f^{-1} is already known to be smooth. Q.E.D.

Of course, when X itself is a compact manifold, every map $f: X \rightarrow Y$ is proper. Thus for compact manifolds, embeddings are just one-to-one immersions.

EXERCISES

- 1. Let A be a linear map of \mathbb{R}^n , and $b \in \mathbb{R}^n$. Show that the mapping $x \to Ax + b$ is a diffeomorphism of \mathbb{R}^n if and only if A is nonsingular.
- Suppose that Z is an *l*-dimensional submanifold of X and that $z \in Z$. Show that there exists a local coordinate system $\{x_1, \ldots, x_k\}$ defined in a neighborhood U of z in X such that $Z \cap U$ is defined by the equations $x_{l+1} = 0, \ldots, x_k = 0$.
- 3. Let $f: \mathbb{R}^1 \to \mathbb{R}^1$ be a local diffeomorphism. Prove that the image of f is an open interval and that, in fact, f maps \mathbb{R}^1 diffeomorphically onto this interval.
- To contrast with Exercise 3, construct a local diffeomorphism $f: \mathbb{R}^2 \to \mathbb{R}^2$ that is not a diffeomorphism onto its image. [HINT: Start with our example for $\mathbb{R}^1 \to S^1$.]
- 5. Prove that a local diffeomorphism $f: X \rightarrow Y$ is actually a diffeomorphism of X onto an open subset of Y, provided that f is one-to-one.
- 6. (a) If f and g are immersions, show that $f \times g$ is.
 - (b) If f and g are immersions, show that $g \circ f$ is.
 - (c) If f is an immersion, show that its restriction to any submanifold of its domain is an immersion.
 - (d) When dim $X = \dim Y$, show that immersions $f: X \longrightarrow Y$ are the same as local diffeomorphisms.
- 7. (a) Check that $g: \mathbb{R}^1 \longrightarrow S^1$, $g(t) = (\cos 2\pi t, \sin 2\pi t)$, is, in fact, a local diffeomorphism.

- (b) From Exercise 6, it follows that $G: \mathbb{R}^2 \to S^1 \times S^1$, $G = g \times g$, is a local diffeomorphism. Also, if L is a line in \mathbb{R}^2 , the restriction $G: L \to S^1 \times S^1$ is an immersion. Prove that if L has irrational slope, G is one-to-one on L.
- 8. Check that the map

$$\mathbf{R}^1 \longrightarrow \mathbf{R}^2, \qquad t \longrightarrow \left(\frac{e^t + e^{-t}}{2}, \frac{e^t - e^{-t}}{2}\right),$$

is an embedding. Prove that its image is one nappe of the hyperbola $x^2 - y^2 = 1$.

- *9. (a) Let x_1, \ldots, x_N be the standard coordinate functions on \mathbb{R}^N , and let X be a k-dimensional submanifold of \mathbb{R}^N . Prove that every point $x \in X$ has a neighborhood on which the restrictions of some k-coordinate functions x_{i_1}, \ldots, x_{i_k} form a local coordinate system. [Hint: Let e_1, \ldots, e_N be the usual basis for \mathbb{R}^N . As a linear algebra lemma, prove that the projection of $T_x(X)$ onto the subspace spanned by e_{i_1}, \ldots, e_{i_k} is bijective for some choice of i_1, \ldots, i_k . Show that this implies that $(x_{i_1}, \ldots, x_{i_k})$ defines a local diffeomorphism of X into \mathbb{R}^k at the point x.]
 - (b) For simplicity, assume that x_1, \ldots, x_k form a local coordinate system on a neighborhood V of x in X. Prove that there are smooth functions g_{k+1}, \ldots, g_N on an open set U in \mathbb{R}^k such that V may be taken to be the set

$$\{(a_1,\ldots,a_k,g_{k+1}(a),\ldots,g_N(a))\in R^N:\ a=(a_1,\ldots,a_k)\in U\}.$$

That is, if we define $g: U \to \mathbb{R}^{N-k}$ by $g = (g_{k+1}, \dots, g_N)$, then V equals the graph of g. Thus every manifold is locally expressible as a graph.

*10. Generalization of the Inverse Function Theorem: Let $f: X \to Y$ be a smooth map that is one-to-one on a compact submanifold Z of X. Suppose that for all $x \in Z$,

$$df_x: T_x(X) \longrightarrow T_{f(x)}(Y)$$

is an isomorphism. Then f maps Z diffeomorphically onto f(Z). (Why?) Prove that f, in fact, maps an open neighborhood of Z in X diffeomorphically onto an open neighborhood of f(Z) in Y. Note that when Z is a single point, this specializes to the Inverse Function Theorem. [HINT: Prove that, by Exercise 5, you need only show f to be one-to-one on some neighborhood of Z. Now if f isn't so, construct sequences $\{a_i\}$ and $\{b_i\}$ in X both converging to a point $z \in Z$, with $a_i \neq b_i$ but $f(a_i) = f(b_i)$. Show that this contradicts the nonsingularity of df_z .]